自适应滤波算法是主动控制系统的核心部分,为进一步优化归一化变步长滤波x-最小均方(NVSS-FxLMS)算法,本研究引入信号插值概念,构建结合信号插值与归一化变步长理念的INVSS-FxLMS算法,以进一步改善控制效果及算法收敛速度,并探究了信号插值数量对算法性能的影响。仿真结果表明,信号插值可改善NVSS-FxLMS算法的控制效果及收敛速度,且插值数量存在最佳范围,当插值数量为10左右时,控制效果及收敛速度较好,总声压级/加速度级降低率达18%,而计算时间仅增加约9.6%,为NVSS-FxLMS算法的发展提供了新思路,并为主动控制系统的改进奠定基础。
Abstract
The adaptive filter algorithm is the core of active control systems (ACS).To further improve the performance of the normalized variable step size filter-x least mean square (NVSS-FxLMS)algorithm,the signal interpolation concept is introduced in this research,and the algorithm combining the signal interpolation with normalized variable step size concept (INVSS-FxLMS algorithm)is proposed to improve the control performance and convergence rate of the NVSS-FxLMS algorithm,then the effect of the number of signal interpolation on the performance of the algorithm is explored.The results show that the signal interpolation can improve the control performance and convergence rate of the NVSS-FxLMS algorithm.Besides,the optimal range of the number of signal interpolation exists.When the number is about 10,the control performance and convergence rate of the algorithm is relatively better,and the total sound pressure level or acceleration level in the frequency domain is reduced by about 18%,while the computational time increases by 9.6%.The research provides a new idea for the improvement of the NVSS-FxLMS algorithm,and lays the foundation for the development of the ACS.
关键词
滤波算法 /
信号插值 /
归一化变步长 /
算法性能 /
主动控制
{{custom_keyword}} /
Key words
filter algorithm /
signal interpolation /
normalized variable step size /
performance of the algorithm /
active control
{{custom_keyword}} /
中图分类号:
TU112.3
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHI D Y,LAM B,SHEN X Y,et al.Multichannel two-gradient direction filtered reference least mean square algorithm for output-constrained multichannel active noise control[J].Signal Processing,2023,207:108938.
[2] 林森.高速列车主动降噪方法研究与对比分析[J].电声技术,2019,43(6):36-38.
[3] 王统洲,王孝兰,刘宁宁,等.车内噪声FXFU-LMS声振混合主动控制算法[J].噪声与振动控制,2020,40(4):161-166.
[4] PARK Y S,CHO M H,OH C S,et al.Coherence-based sensor set expansion for optimal sensor placement in active road noise control[J].Mechanical Systems and Signal Processing,2022,169:108788.
[5] 李雅榕,郭辉,王岩松,等.车内噪声主动控制算法研究[J].噪声与振动控制,2018,38(6):65-71.
[6] BÜKER J,LAß A,WERNER P,et al.Active noise cancellation applied to a centrifugal pump in a closed loop piping system[J].Applied Acoustics,2021,178:108003.
[7] 谢豫娟,谢锡海.基于改进的FXLMS算法的主动降噪耳机系统研究[J].电声技术,2021,45(6):71-75.
[8] MENG H,CHEN S M.A modified adaptive weight-constrained FxLMS algorithm for feedforward active noise control systems[J].Applied Acoustics,2020,164:107227.
[9] JIANG Y,CHEN S M,MENG H,et al.A novel adaptive step-size hybrid active noise control system[J].Applied Acoustics,2021,182:108285.
[10] MA Y P,XIAO Y G,MA L Y,et al.Statistical analysis of narrowband active noise control using a simplified variable step-size FXLMS algorithm[J].Signal Processing,2021,183:108012.
[11] AKHTAR M T,NISHIHARA A.Data-reusing-based filtered-reference adaptive algorithms for active control of impulsive noise sources[J].Applied Acoustics,2015,92:18-26.
[12] TABATABAEI ARDEKANI I,ABDULLA W H.Theoretical convergence analysis of FxLMS algorithm[J].Signal Processing,2010,90(12):3046-3055.
[13] 张锋,李以农,丁庆中.FxLMS算法的实现及硬件在环仿真验证[J].重庆大学学报,2013,36(8):26-32.
[14] CHENG Y B,ZHANG R,CHEN S M.Wavelet packet transform applied to active noise control system for mixed noise in nonlinear environment[J].Digital Signal Processing,2023,133:103860.
[15] 郭畅.基于Powll涡声理论的离心泵内三维流场与诱导声场耦合机制研究[D].济南:山东大学,2020.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
山东省自然科学基金(ZR2021QE055);山东省大学生创新创业计划项目(S202210431032)
{{custom_fund}}